Algorithmic correspondence and analytic rules

03/26/2022
by   Andrea De Domenico, et al.
0

We introduce the algorithm MASSA which takes classical modal formulas in input, and, when successful, effectively generates: (a) (analytic) geometric rules of the labelled calculus G3K, and (b) cut-free derivations (of a certain `canonical' shape) of each given input formula in the geometric labelled calculus obtained by adding the rule in output to G3K. We show that MASSA successfully terminates whenever its input formula is a (definite) analytic inductive formula, in which case, the geometric axiom corresponding to the output rule is, modulo logical equivalence, the first-order correspondent of the input formula.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro