Agreement-based Learning of Parallel Lexicons and Phrases from Non-Parallel Corpora

06/15/2016
by   Chunyang Liu, et al.
0

We introduce an agreement-based approach to learning parallel lexicons and phrases from non-parallel corpora. The basic idea is to encourage two asymmetric latent-variable translation models (i.e., source-to-target and target-to-source) to agree on identifying latent phrase and word alignments. The agreement is defined at both word and phrase levels. We develop a Viterbi EM algorithm for jointly training the two unidirectional models efficiently. Experiments on the Chinese-English dataset show that agreement-based learning significantly improves both alignment and translation performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro