Age-stratified epidemic model using a latent marked Hawkes process

08/19/2022
by   Stamatina Lamprinakou, et al.
0

We extend the unstructured homogeneously mixing epidemic model introduced by Lamprinakou et al. [arXiv:2208.07340] considering a finite population stratified by age bands. We model the actual unobserved infections using a latent marked Hawkes process and the reported aggregated infections as random quantities driven by the underlying Hawkes process. We apply a Kernel Density Particle Filter (KDPF) to infer the marked counting process, the instantaneous reproduction number for each age group and forecast the epidemic's future trajectory in the near future; considering the age bands and the population size does not increase the computational effort. We demonstrate the performance of the proposed inference algorithm on synthetic data sets and COVID-19 reported cases in various local authorities in the UK. We illustrate that taking into account the individual heterogeneity in age decreases the uncertainty of estimates and provides a real-time measurement of interventions and behavioural changes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro