Affine Image Registration Transformation Estimation Using a Real Coded Genetic Algorithm with SBX

04/10/2012
by   Mosab Bazargani, et al.
0

This paper describes the application of a real coded genetic algorithm (GA) to align two or more 2-D images by means of image registration. The proposed search strategy is a transformation parameters-based approach involving the affine transform. The real coded GA uses Simulated Binary Crossover (SBX), a parent-centric recombination operator that has shown to deliver a good performance in many optimization problems in the continuous domain. In addition, we propose a new technique for matching points between a warped and static images by using a randomized ordering when visiting the points during the matching procedure. This new technique makes the evaluation of the objective function somewhat noisy, but GAs and other population-based search algorithms have been shown to cope well with noisy fitness evaluations. The results obtained are competitive to those obtained by state-of-the-art classical methods in image registration, confirming the usefulness of the proposed noisy objective function and the suitability of SBX as a recombination operator for this type of problem.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro