Affective Expression Analysis in-the-wild using Multi-Task Temporal Statistical Deep Learning Model

02/21/2020
by   Nhu-Tai Do, et al.
0

Affective behavior analysis plays an important role in human-computer interaction, customer marketing, health monitoring. ABAW Challenge and Aff-Wild2 dataset raise the new challenge for classifying basic emotions and regression valence-arousal value under in-the-wild environments. In this paper, we present an affective expression analysis model that deals with the above challenges. Our approach includes STAT and Temporal Module for fine-tuning again face feature model. We experimented on Aff-Wild2 dataset, a large-scale dataset for ABAW Challenge with the annotations for both the categorical and valence-arousal emotion. We achieved the expression score 0.533 and valence-arousal score 0.5126 on validation set.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro