Adaptive Discrete Smoothing for High-Dimensional and Nonlinear Panel Data

12/30/2019
by   Xi Chen, et al.
8

In this paper we develop a data-driven smoothing technique for high-dimensional and non-linear panel data models. We allow for individual specific (non-linear) functions and estimation with econometric or machine learning methods by using weighted observations from other individuals. The weights are determined by a data-driven way and depend on the similarity between the corresponding functions and are measured based on initial estimates. The key feature of such a procedure is that it clusters individuals based on the distance / similarity between them, estimated in a first stage. Our estimation method can be combined with various statistical estimation procedures, in particular modern machine learning methods which are in particular fruitful in the high-dimensional case and with complex, heterogeneous data. The approach can be interpreted as a “ soft-clustering” in comparison to traditional“ hard clustering” that assigns each individual to exactly one group. We conduct a simulation study which shows that the prediction can be greatly improved by using our estimator. Finally, we analyze a big data set from didichuxing.com, a leading company in transportation industry, to analyze and predict the gap between supply and demand based on a large set of covariates. Our estimator clearly performs much better in out-of-sample prediction compared to existing linear panel data estimators.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro