Achieving Exact Cluster Recovery Threshold via Semidefinite Programming

11/24/2014
by   Bruce Hajek, et al.
0

The binary symmetric stochastic block model deals with a random graph of n vertices partitioned into two equal-sized clusters, such that each pair of vertices is connected independently with probability p within clusters and q across clusters. In the asymptotic regime of p=a n/n and q=b n/n for fixed a,b and n →∞, we show that the semidefinite programming relaxation of the maximum likelihood estimator achieves the optimal threshold for exactly recovering the partition from the graph with probability tending to one, resolving a conjecture of Abbe et al. Abbe14. Furthermore, we show that the semidefinite programming relaxation also achieves the optimal recovery threshold in the planted dense subgraph model containing a single cluster of size proportional to n.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro