Accelerating Representation Learning with View-Consistent Dynamics in Data-Efficient Reinforcement Learning

01/18/2022
by   Tao Huang, et al.
0

Learning informative representations from image-based observations is of fundamental concern in deep Reinforcement Learning (RL). However, data-inefficiency remains a significant barrier to this objective. To overcome this obstacle, we propose to accelerate state representation learning by enforcing view-consistency on the dynamics. Firstly, we introduce a formalism of Multi-view Markov Decision Process (MMDP) that incorporates multiple views of the state. Following the structure of MMDP, our method, View-Consistent Dynamics (VCD), learns state representations by training a view-consistent dynamics model in the latent space, where views are generated by applying data augmentation to states. Empirical evaluation on DeepMind Control Suite and Atari-100k demonstrates VCD to be the SoTA data-efficient algorithm on visual control tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro