Accelerating Monte-Carlo Tree Search on CPU-FPGA Heterogeneous Platform

08/23/2022
by   Yuan Meng, et al.
0

Monte Carlo Tree Search (MCTS) methods have achieved great success in many Artificial Intelligence (AI) benchmarks. The in-tree operations become a critical performance bottleneck in realizing parallel MCTS on CPUs. In this work, we develop a scalable CPU-FPGA system for Tree-Parallel MCTS. We propose a novel decomposition and mapping of MCTS data structure and computation onto CPU and FPGA to reduce communication and coordination. High scalability of our system is achieved by encapsulating in-tree operations in an SRAM-based FPGA accelerator. To lower the high data access latency and inter-worker synchronization overheads, we develop several hardware optimizations. We show that by using our accelerator, we obtain up to 35× speedup for in-tree operations, and 3× higher overall system throughput. Our CPU-FPGA system also achieves superior scalability wrt number of parallel workers than state-of-the-art parallel MCTS implementations on CPU.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro