Accelerating computational modeling and design of high-entropy alloys

10/22/2020
by   Rahul Singh, et al.
0

With huge design spaces for unique chemical and mechanical properties, we remove a roadblock to computational design of high-entropy alloys using a metaheuristic hybrid Cuckoo Search (CS) for "on-the-fly" construction of Super-Cell Random APproximates (SCRAPs) having targeted atomic site and pair probabilities on arbitrary crystal lattices. Our hybrid-CS schema overcomes large, discrete combinatorial optimization by ultrafast global solutions that scale linearly in system size and strongly in parallel, e.g. a 4-element, 128-atom model [a 10^73+ space] is found in seconds – a reduction of 13,000+ over current strategies. With model-generation eliminated as a bottleneck, computational alloy design can be performed that is currently impossible or impractical. We showcase the method for real alloys with varying short-range order. Being problem-agnostic, our hybrid-CS schema offers numerous applications in diverse fields.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro