A two stages Deep Learning Architecture for Model Reduction of Parametric Time-Dependent Problems

01/24/2023
by   Isabella Carla Gonnella, et al.
0

Parametric time-dependent systems are of a crucial importance in modeling real phenomena, often characterized by non-linear behaviors too. Those solutions are typically difficult to generalize in a sufficiently wide parameter space while counting on limited computational resources available. As such, we present a general two-stages deep learning framework able to perform that generalization with low computational effort in time. It consists in a separated training of two pipe-lined predictive models. At first, a certain number of independent neural networks are trained with data-sets taken from different subsets of the parameter space. Successively, a second predictive model is specialized to properly combine the first-stage guesses and compute the right predictions. Promising results are obtained applying the framework to incompressible Navier-Stokes equations in a cavity (Rayleigh-Bernard cavity), obtaining a 97 numerical resolution for a new value of the Grashof number.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro