A Two-Branch Neural Network for Gait Recognition

02/22/2022
by   Likai Wang, et al.
0

Gait recognition, a promising long-distance biometric technology, has aroused intense interest in computer vision. Existing works on gait recognition can be divided into appearance-based methods and model-based methods, which extract features from silhouettes and skeleton data, respectively. However, since appearance-based methods are greatly affected by clothing changing and carrying condition, and model-based methods are limited by the accuracy of pose estimation approaches, gait recognition remains challenging in practical applications. In order to integrate the merits of such two approaches, a two-branch neural network (NN)-based model is proposed in this paper. The method contains two branches, namely a CNN-based branch taking silhouettes as input and a GCN-based branch taking skeletons as input. In addition, two modifications are introduced into the GCN-based branch to boost the performance. First, we present a simple fully connected graph convolution operator to integrate multi-scale graph convolutions and relieve dependence on natural connections. Second, we deploy an attention module named STC-Att after each GCN block to learn spatial, temporal and channel-wise attention simultaneously. We evaluated the proposed two-branch neural network on the CASIA-B dataset. The experimental results show that our method achieves state-of-the-art performance in various conditions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro