A Study of Neural Matching Models for Cross-lingual IR

05/26/2020
by   Puxuan Yu, et al.
0

In this study, we investigate interaction-based neural matching models for ad-hoc cross-lingual information retrieval (CLIR) using cross-lingual word embeddings (CLWEs). With experiments conducted on the CLEF collection over four language pairs, we evaluate and provide insight into different neural model architectures, different ways to represent query-document interactions and word-pair similarity distributions in CLIR. This study paves the way for learning an end-to-end CLIR system using CLWEs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro