A spelling correction model for end-to-end speech recognition

02/19/2019
by   Jinxi Guo, et al.
0

Attention-based sequence-to-sequence models for speech recognition jointly train an acoustic model, language model (LM), and alignment mechanism using a single neural network and require only parallel audio-text pairs. Thus, the language model component of the end-to-end model is only trained on transcribed audio-text pairs, which leads to performance degradation especially on rare words. While there have been a variety of work that look at incorporating an external LM trained on text-only data into the end-to-end framework, none of them have taken into account the characteristic error distribution made by the model. In this paper, we propose a novel approach to utilizing text-only data, by training a spelling correction (SC) model to explicitly correct those errors. On the LibriSpeech dataset, we demonstrate that the proposed model results in an 18.6 directly correcting top ASR hypothesis, and a 29.0 further rescoring an expanded n-best list using an external LM.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro