A spectral bound on hypergraph discrepancy

07/07/2019
by   Aditya Potukuchi, et al.
0

Let H be a t-regular hypergraph on n vertices and m edges. Let M be the m × n incidence matrix of H and let us denote λ =_v ∈1^1/√(t)vMv. We show that the discrepancy of H is O(√(λ t)). As a corollary, this gives us that for every t, the discrepancy of a random t-regular hypergraph with n vertices and m ≥ n edges is almost surely O(√(t)) as n grows. The proof also gives a polynomial time algorithm that takes a hypergraph as input and outputs a coloring with the above guarantee.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro