A Spectral Approach to Polytope Diameter

01/28/2021
by   Hariharan Narayanan, et al.
0

We prove upper bounds on the graph diameters of polytopes in two settings. The first is a worst-case bound for integer polytopes in terms of the length of the description of the polytope (in bits) and the minimum angle between facets of its polar. The second is a smoothed analysis bound: given an appropriately normalized polytope, we add small Gaussian noise to each constraint. We consider a natural geometric measure on the vertices of the perturbed polytope (corresponding to the mean curvature measure of its polar) and show that with high probability there exists a "giant component" of vertices, with measure 1-o(1) and polynomial diameter. Both bounds rely on spectral gaps – of a certain Schrödinger operator in the first case, and a certain continuous time Markov chain in the second – which arise from the log-concavity of the volume of a simple polytope in terms of its slack variables.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro