A Signature-based Algorithm for Computing the Nondegenerate Locus of a Polynomial System

02/28/2022
by   Christian Eder, et al.
0

Polynomial system solving arises in many application areas to model non-linear geometric properties. In such settings, polynomial systems may come with degeneration which the end-user wants to exclude from the solution set. The nondegenerate locus of a polynomial system is the set of points where the codimension of the solution set matches the number of equations. Computing the nondegenerate locus is classically done through ideal-theoretic operations in commutative algebra such as saturation ideals or equidimensional decompositions to extract the component of maximal codimension. By exploiting the algebraic features of signature-based Gröbner basis algorithms we design an algorithm which computes a Gröbner basis of the equations describing the closure of the nondegenerate locus of a polynomial system, without computing first a Gröbner basis for the whole polynomial system.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro