A robust GMRES algorithm in Tensor Train format

10/26/2022
by   Olivier Coulaud, et al.
0

We consider the solution of linear systems with tensor product structure using a GMRES algorithm. In order to cope with the computational complexity in large dimension both in terms of floating point operations and memory requirement, our algorithm is based on low-rank tensor representation, namely the Tensor Train format. In a backward error analysis framework, we show how the tensor approximation affects the accuracy of the computed solution. With the bacwkward perspective, we investigate the situations where the (d+1)-dimensional problem to be solved results from the concatenation of a sequence of d-dimensional problems (like parametric linear operator or parametric right-hand side problems), we provide backward error bounds to relate the accuracy of the (d+1)-dimensional computed solution with the numerical quality of the sequence of d-dimensional solutions that can be extracted form it. This enables to prescribe convergence threshold when solving the (d+1)-dimensional problem that ensures the numerical quality of the d-dimensional solutions that will be extracted from the (d+1)-dimensional computed solution once the solver has converged. The above mentioned features are illustrated on a set of academic examples of varying dimensions and sizes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro