A Remark on the Invariant Energy Quadratization (IEQ) Method for Preserving the Original Energy Dissipation Laws

11/25/2021
by   Zengyan Zhang, et al.
0

In this letter, we revisit the IEQ method and provide a new perspective on its ability to preserve the original energy dissipation laws. The invariant energy quadratization (IEQ) method has been widely used to design energy stable numerical schemes for phase-field or gradient flow models. Although there are many merits of the IEQ method, one major disadvantage is that the IEQ method usually respects a modified energy law, where the modified energy is expressed in the auxiliary variables. Still, the dissipation laws in terms of the original energy are not guaranteed. Using the widely-used Cahn-Hilliard equation as an example, we demonstrate that the Runge-Kutta IEQ method indeed can preserve the original energy dissipation laws for certain situations up to arbitrary high-order accuracy. Interested readers are highly encouraged to apply our idea to other phase-field equations or gradient flow models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro