A Reliable, Self-Adaptive Face Identification Framework via Lyapunov Optimization

09/02/2021
by   Dohyeon Kim, et al.
0

Realtime face identification (FID) from a video feed is highly computation-intensive, and may exhaust computation resources if performed on a device with a limited amount of resources (e.g., a mobile device). In general, FID performs better when images are sampled at a higher rate, minimizing false negatives. However, performing it at an overwhelmingly high rate exposes the system to the risk of a queue overflow that hampers the system's reliability. This paper proposes a novel, queue-aware FID framework that adapts the sampling rate to maximize the FID performance while avoiding a queue overflow by implementing the Lyapunov optimization. A preliminary evaluation via a trace-based simulation confirms the effectiveness of the framework.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro