A Refined Analysis of Submodular Greedy

02/25/2021
by   Ariel Kulik, et al.
0

Many algorithms for maximizing a monotone submodular function subject to a knapsack constraint rely on the natural greedy heuristic. We present a novel refined analysis of this greedy heuristic which enables us to: (1) reduce the enumeration in the tight (1-e^-1)-approximation of [Sviridenko 04] from subsets of size three to two; (2) present an improved upper bound of 0.42945 for the classic algorithm which returns the better between a single element and the output of the greedy heuristic.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro