A Rapid Pattern-Recognition Method for Driving Types Using Clustering-Based Support Vector Machines

05/22/2016
by   Wenshuo Wang, et al.
0

A rapid pattern-recognition approach to characterize driver's curve-negotiating behavior is proposed. To shorten the recognition time and improve the recognition of driving styles, a k-means clustering-based support vector machine ( kMC-SVM) method is developed and used for classifying drivers into two types: aggressive and moderate. First, vehicle speed and throttle opening are treated as the feature parameters to reflect the driving styles. Second, to discriminate driver curve-negotiating behaviors and reduce the number of support vectors, the k-means clustering method is used to extract and gather the two types of driving data and shorten the recognition time. Then, based on the clustering results, a support vector machine approach is utilized to generate the hyperplane for judging and predicting to which types the human driver are subject. Lastly, to verify the validity of the kMC-SVM method, a cross-validation experiment is designed and conducted. The research results show that the k MC-SVM is an effective method to classify driving styles with a short time, compared with SVM method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro