A Private and Computationally-Efficient Estimator for Unbounded Gaussians

11/08/2021
by   Gautam Kamath, et al.
0

We give the first polynomial-time, polynomial-sample, differentially private estimator for the mean and covariance of an arbitrary Gaussian distribution 𝒩(μ,Σ) in ℝ^d. All previous estimators are either nonconstructive, with unbounded running time, or require the user to specify a priori bounds on the parameters μ and Σ. The primary new technical tool in our algorithm is a new differentially private preconditioner that takes samples from an arbitrary Gaussian 𝒩(0,Σ) and returns a matrix A such that A Σ A^T has constant condition number.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro