A Pressure-Stabilized Continuous Data Assimilation Reduced Order Model

04/01/2023
by   Xi Li, et al.
0

We present a novel reduced-order pressure stabilization strategy based on continuous data assimilation(CDA) for two-dimensional incompressible Navier-Stokes equations. A feedback control term is incorporated into pressure-correction projection method to derive the Galerkin projection-based CDA proper orthogonal decomposition reduced order model(POD-ROM) that uses pressure modes as well as velocity's simultaneously to compute the reduced-order solutions. The greatest advantage over this ROM is circumventing the standard discrete inf-sup condition for the mixed POD velocity-pressure spaces with the help of CDA which also guarantees the high accuracy of reduced-order solutions; moreover, the classical projection method decouples reduced-order velocity and pressure, which further enhances computational efficiency. Unconditional stability and convergence over POD modes(up to discretization error) are presented, and a benchmark test is performed to validate the theoretical results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro