A practical example for the non-linear Bayesian filtering of model parameters

07/23/2018
by   Matthieu Bulté, et al.
0

In this tutorial we consider the non-linear Bayesian filtering of static parameters in a time-dependent model. We outline the theoretical background and discuss appropriate solvers. We focus on particle-based filters and present Sequential Importance Sampling (SIS) and Sequential Monte Carlo (SMC). Throughout the paper we illustrate the concepts and techniques with a practical example using real-world data. The task is to estimate the gravitational acceleration of the Earth g by using observations collected from a simple pendulum. Importantly, the particle filters enable the adaptive updating of the estimate for g as new observations become available. For tutorial purposes we provide the data set and a Python implementation of the particle filters.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro