A Poisson-Based Approximation Algorithm for Stochastic Bin Packing of Bernoulli Items

08/25/2023
by   Tomasz Kanas, et al.
0

A cloud scheduler packs tasks onto machines with contradictory goals of (1) using the machines as efficiently as possible while (2) avoiding overloading that might result in CPU throttling or out-of-memory errors. We take a stochastic approach that models the uncertainty of tasks' resource requirements by random variables. We focus on a little-explored case of items, each having a Bernoulli distribution that corresponds to tasks that are either idle or need a certain CPU share. RPAP, our online approximation algorithm, upper-bounds a subset of items by Poisson distributions. Unlike existing algorithms for Bernoulli items that prove the approximation ratio only up to a multiplicative constant, we provide a closed-form expression. We derive RPAPC, a combined approach having the same theoretical guarantees as RPAP. In simulations, RPAPC's results are close to FFR, a greedy heuristic with no worst-case guarantees; RPAPC slightly outperforms FFR on datasets with small items.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro