A Novel Genetic Search Scheme Based on Nature – Inspired Evolutionary Algorithms for Self-Dual Codes

12/22/2020
by   Adrian Korban, et al.
0

In this paper, a genetic algorithm, one of the evolutionary algorithms optimization methods, is used for the first time for the problem of finding extremal binary self-dual codes. We present a comparison of the computational times between a genetic algorithm and a linear search for different size search spaces and show that the genetic algorithm is capable of finding binary self-dual codes significantly faster than the linear search. Moreover, by employing a known matrix construction together with the genetic algorithm, we are able to obtain new binary self-dual codes of lengths 68 and 72 in a significantly short time. In particular, we obtain 11 new extremal binary self-dual codes of length 68 and 17 new binary self-dual codes of length 72.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro