A New Path to Construct Parametric Orientation Field: Sparse FOMFE Model and Compressed Sparse FOMFE Model

07/01/2014
by   Jinwei Xu, et al.
0

Orientation field, representing the fingerprint ridge structure direction, plays a crucial role in fingerprint-related image processing tasks. Orientation field is able to be constructed by either non-parametric or parametric methods. In this paper, the advantages and disadvantages regarding to the existing non-parametric and parametric approaches are briefly summarized. With the further investigation for constructing the orientation field by parametric technique, two new models - sparse FOMFE model and compressed sparse FOMFE model are introduced, based on the rapidly developing signal sparse representation and compressed sensing theories. The experiments on high-quality fingerprint image dataset (plain and rolled print) and poor-quality fingerprint image dataset (latent print) demonstrate their feasibilities to construct the orientation field in a sparse or even compressed sparse mode. The comparisons among the state-of-art orientation field modeling approaches show that the proposed two models have the potential availability in big data-oriented fingerprint indexing tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro