A New Lower Bound for Deterministic Truthful Scheduling

05/20/2020
by   Yiannis Giannakopoulos, et al.
0

We study the problem of truthfully scheduling m tasks to n selfish unrelated machines, under the objective of makespan minimization, as was introduced in the seminal work of Nisan and Ronen [STOC'99]. Closing the current gap of [2.618,n] on the approximation ratio of deterministic truthful mechanisms is a notorious open problem in the field of algorithmic mechanism design. We provide the first such improvement in more than a decade, since the lower bounds of 2.414 (for n=3) and 2.618 (for n→∞) by Christodoulou et al. [SODA'07] and Koutsoupias and Vidali [MFCS'07], respectively. More specifically, we show that the currently best lower bound of 2.618 can be achieved even for just n=4 machines; for n=5 we already get the first improvement, namely 2.711; and allowing the number of machines to grow arbitrarily large we can get a lower bound of 2.755.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro