A Multiple Parameter Linear Scale-Space for one dimensional Signal Classification

05/22/2023
by   Leon A. Luxemburg, et al.
0

In this article we construct a maximal set of kernels for a multi-parameter linear scale-space that allow us to construct trees for classification and recognition of one-dimensional continuous signals similar the Gaussian linear scale-space approach. Fourier transform formulas are provided and used for quick and efficient computations. A number of useful properties of the maximal set of kernels are derived. We also strengthen and generalize some previous results on the classification of Gaussian kernels. Finally, a new topologically invariant method of constructing trees is introduced.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro