A Multi-scale Optimization Learning Framework for Diffeomorphic Deformable Registration

04/30/2020
by   Risheng Liu, et al.
6

Conventional deformable registration methods aim at solving a specifically designed optimization model on image pairs and offer a rigorous theoretical treatment. However, their computational costs are exceptionally high. In contrast, recent learning-based approaches can provide fast deformation estimation. These heuristic network architectures are fully data-driven and thus lack explicitly domain knowledge or geometric constraints, such as topology-preserving, which is indispensable to generate plausible deformations. To integrate the advantages and avoid the limitations of these two categories of approaches, we design a new learning-based framework to optimize a diffeomorphic model via multi-scale propagations. Specifically, we first introduce a generic optimization model to formulate diffeomorphic registration with both velocity and deformation fields. Then we propose a schematic optimization scheme with a nested splitting technique. Finally, a series of learnable architectures are utilized to obtain the final propagative updating in the coarse-to-fine feature spaces. We conduct two groups of image registration experiments on 3D adult and child brain MR volume datasets including image-to-atlas and image-to-image registrations. Extensive results demonstrate that the proposed method achieves state-of-the-art performance with diffeomorphic guarantee and extreme efficiency.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro