A Molecular-Continuum Multiscale Model for Inviscid Liquid-Vapor Flow with Sharp Interfaces

04/05/2022
by   Jim Magiera, et al.
0

The dynamics of compressible liquid-vapor flow depends sensitively on the microscale behavior at the phase boundary. We consider a sharp-interface approach, and propose a multiscale model to describe liquid-vapor flow accurately, without imposing ad-hoc closure relations on the continuum scale. The multiscale model combines the Euler equations on the continuum scale with molecular-scale particle simulations that govern the interface motion. We rely on an interface-preserving moving mesh finite volume method to discretize the continuum-scale sharp-interface flow in a conservative manner. Computational efficiency, while preserving physical properties, is achieved by a surrogate solver for the interface dynamics based on constraint-aware neural networks. The multiscale model is presented in its general form, and applied to regimes of temperature-dependent liquid-vapor flow which have not been accessible before.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro