A minimum Wasserstein distance approach to Fisher's combination of independent discrete p-values

09/14/2023
by   Gonzalo Contador, et al.
0

This paper introduces a comprehensive framework to adjust a discrete test statistic for improving its hypothesis testing procedure. The adjustment minimizes the Wasserstein distance to a null-approximating continuous distribution, tackling some fundamental challenges inherent in combining statistical significances derived from discrete distributions. The related theory justifies Lancaster's mid-p and mean-value chi-squared statistics for Fisher's combination as special cases. However, in order to counter the conservative nature of Lancaster's testing procedures, we propose an updated null-approximating distribution. It is achieved by further minimizing the Wasserstein distance to the adjusted statistics within a proper distribution family. Specifically, in the context of Fisher's combination, we propose an optimal gamma distribution as a substitute for the traditionally used chi-squared distribution. This new approach yields an asymptotically consistent test that significantly improves type I error control and enhances statistical power.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro