A Minimax Approach to Supervised Learning

06/07/2016
by   Farzan Farnia, et al.
0

Given a task of predicting Y from X, a loss function L, and a set of probability distributions Γ on (X,Y), what is the optimal decision rule minimizing the worst-case expected loss over Γ? In this paper, we address this question by introducing a generalization of the principle of maximum entropy. Applying this principle to sets of distributions with marginal on X constrained to be the empirical marginal from the data, we develop a general minimax approach for supervised learning problems. While for some loss functions such as squared-error and log loss, the minimax approach rederives well-knwon regression models, for the 0-1 loss it results in a new linear classifier which we call the maximum entropy machine. The maximum entropy machine minimizes the worst-case 0-1 loss over the structured set of distribution, and by our numerical experiments can outperform other well-known linear classifiers such as SVM. We also prove a bound on the generalization worst-case error in the minimax approach.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro