A Method to Translate Order-Sorted Algebras to Many-Sorted Algebras

02/19/2018
by   Liyi Li, et al.
0

Order-sorted algebras and many sorted algebras exist in a long history with many different implementations and applications. A lot of language specifications have been defined in order-sorted algebra frameworks such as the language specifications in K (an order-sorted algebra framework). The biggest problem in a lot of the order-sorted algebra frameworks is that even if they might allow developers to write programs and language specifications easily, but they do not have a large set of tools to provide reasoning infrastructures to reason about the specifications built on the frameworks, which are very common in some many-sorted algebra framework such as Isabelle/HOL, Coq and FDR. This fact brings us the necessity to marry the worlds of order-sorted algebras and many sorted algebras. In this paper, we propose an algorithm to translate a strictly sensible order-sorted algebra to a many-sorted one in a restricted domain by requiring the order-sorted algebra to be strictly sensible. The key idea of the translation is to add an equivalence relation called core equality to the translated many-sorted algebras. By defining this relation, we reduce the complexity of translating a strictly sensible order-sorted algebra to a many-sorted one, make the translated many-sorted algebra equations only increasing by a very small amount of new equations, and keep the number of rewrite rules in the algebra in the same amount. We then prove the order-sorted algebra and its translated many-sorted algebra are bisimilar. To the best of our knowledge, our translation and bisimilar proof is the first attempt in translating and relating an order-sorted algebra with a many-sorted one in a way that keeps the size of the translated many-sorted algebra relatively small.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro