A Method for Comparing Hedge Funds

03/01/2013
by   Uri Kartoun, et al.
0

The paper presents new machine learning methods: signal composition, which classifies time-series regardless of length, type, and quantity; and self-labeling, a supervised-learning enhancement. The paper describes further the implementation of the methods on a financial search engine system to identify behavioral similarities among time-series representing monthly returns of 11,312 hedge funds operated during approximately one decade (2000 - 2010). The presented approach of cross-category and cross-location classification assists the investor to identify alternative investments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro