A high-resolution dynamical view on momentum methods for over-parameterized neural networks

08/08/2022
by   Xin Liu, et al.
1

In this paper, we present the convergence analysis of momentum methods in training a two-layer over-parameterized ReLU neural network, where the number of parameters is significantly larger than that of training instances. Existing works on momentum methods show that the heavy-ball method (HB) and Nesterov's accelerated method (NAG) share the same limiting ordinary differential equation (ODE), which leads to identical convergence rate. From a high-resolution dynamical view, we show that HB differs from NAG in terms of the convergence rate. In addition, our findings provide tighter upper bounds on convergence for the high-resolution ODEs of HB and NAG.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro