A Generalized Data Representation and Training-Performance Analysis for Deep Learning-Based Communications Systems

06/27/2018
by   Xiao Chen, et al.
0

Deep learning (DL)-based autoencoder is a potential architecture to implement end-to-end communication systems. In this letter, we first give a brief introduction to the autoencoder-represented communication system. Then, we propose a novel generalized data representation (GDR) aiming to improve the data rate of DL-based communication systems. Finally, simulation results show that the proposed GDR scheme has lower training complexity, comparable block error rate performance and higher channel capacity than the conventional one-hot vector scheme. Furthermore, we investigate the effect of signal-to-noise ratio (SNR) in DL-based communication systems and prove that training at a high SNR could produce a good training performance for autoencoder.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro