A Finite-Particle Convergence Rate for Stein Variational Gradient Descent

11/17/2022
by   Jiaxin Shi, et al.
0

We provide a first finite-particle convergence rate for Stein variational gradient descent (SVGD). Specifically, whenever the target distribution is sub-Gaussian with a Lipschitz score, SVGD with n particles and an appropriate step size sequence drives the kernel Stein discrepancy to zero at an order 1/sqrt(log log n) rate. We suspect that the dependence on n can be improved, and we hope that our explicit, non-asymptotic proof strategy will serve as a template for future refinements.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro