A family of orthogonal rational functions and other orthogonal systems with a skew-Hermitian differentiation matrix

11/20/2019
by   Arieh Iserles, et al.
0

In this paper we explore orthogonal systems in L_2(R) which give rise to a skew-Hermitian, tridiagonal differentiation matrix. Surprisingly, allowing the differentiation matrix to be complex leads to a particular family of rational orthogonal functions with favourable properties: they form an orthonormal basis for L_2(R), have a simple explicit formulae as rational functions, can be manipulated easily and the expansion coefficients are equal to classical Fourier coefficients of a modified function, hence can be calculated rapidly. We show that this family of functions is essentially the only orthonormal basis possessing a differentiation matrix of the above form and whose coefficients are equal to classical Fourier coefficients of a modified function though a monotone, differentiable change of variables. Examples of other orthogonal bases with skew-Hermitian, tridiagonal differentiation matrices are discussed as well.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro