A Comprehensive Overview and Survey of Recent Advances in Meta-Learning

04/17/2020
by   Huimin Peng, et al.
0

This article reviews meta-learning which seeks rapid and accurate model adaptation to unseen tasks with applications in image classification, natural language processing and robotics. Unlike deep learning, meta-learning uses few-shot datasets and concerns further improving model generalization to obtain higher prediction accuracy. We summarize meta-learning models in three categories: black-box adaptation, similarity based method and meta-learner procedure. Recent applications concentrate upon combination of meta-learning with Bayesian deep learning and reinforcement learning to provide feasible integrated problem solutions. We present performance comparison of recent meta-learning methods and discuss future research direction.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro