A Comparative Study of Graph Neural Networks for Shape Classification in Neuroimaging

10/29/2022
by   Nairouz Shehata, et al.
0

Graph neural networks have emerged as a promising approach for the analysis of non-Euclidean data such as meshes. In medical imaging, mesh-like data plays an important role for modelling anatomical structures, and shape classification can be used in computer aided diagnosis and disease detection. However, with a plethora of options, the best architectural choices for medical shape analysis using GNNs remain unclear. We conduct a comparative analysis to provide practitioners with an overview of the current state-of-the-art in geometric deep learning for shape classification in neuroimaging. Using biological sex classification as a proof-of-concept task, we find that using FPFH as node features substantially improves GNN performance and generalisation to out-of-distribution data; we compare the performance of three alternative convolutional layers; and we reinforce the importance of data augmentation for graph based learning. We then confirm these results hold for a clinically relevant task, using the classification of Alzheimer's disease.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro