A class of dependent Dirichlet processes via latent multinomial processes

08/27/2021
by   Luis E. Nieto-Barajas, et al.
0

We describe a procedure to introduce general dependence structures on a set of Dirichlet processes. Dependence can be in one direction to define a time series or in two directions to define spatial dependencies. More directions can also be considered. Dependence is induced via a set of latent processes and exploit the conjugacy property between the Dirichlet and the multinomial processes to ensure that the marginal law for each element of the set is a Dirichlet process. Dependence is characterised through the correlation between any two elements. Posterior distributions are obtained when we use the set of Dirichlet processes as prior distributions in a bayesian nonparametric context. Posterior predictive distributions induce partially exchangeable sequences defined by generalised Pólya urs. A numerical example to illustrate is also included.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro