A C^0 interior penalty method for mth-Laplace equation

10/20/2021
by   Huangxin Chen, et al.
0

In this paper, we propose a C^0 interior penalty method for mth-Laplace equation on bounded Lipschitz polyhedral domain in ℝ^d, where m and d can be any positive integers. The standard H^1-conforming piecewise r-th order polynomial space is used to approximate the exact solution u, where r can be any integer greater than or equal to m. Unlike the interior penalty method in [T. Gudi and M. Neilan, An interior penalty method for a sixth-order elliptic equation, IMA J. Numer. Anal., 31(4) (2011), pp. 1734–1753], we avoid computing D^m of numerical solution on each element and high order normal derivatives of numerical solution along mesh interfaces. Therefore our method can be easily implemented. After proving discrete H^m-norm bounded by the natural energy semi-norm associated with our method, we manage to obtain stability and optimal convergence with respect to discrete H^m-norm. Numerical experiments validate our theoretical estimate.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro