3D Morphable Models as Spatial Transformer Networks

08/23/2017
by   Anil Bas, et al.
0

In this paper, we show how a 3D Morphable Model (i.e. a statistical model of the 3D shape of a class of objects such as faces) can be used to spatially transform input data as a module (a 3DMM-STN) within a convolutional neural network. This is an extension of the original spatial transformer network in that we are able to interpret and normalise 3D pose changes and self-occlusions. The trained localisation part of the network is independently useful since it learns to fit a 3D morphable model to a single image. We show that the localiser can be trained using only simple geometric loss functions on a relatively small dataset yet is able to perform robust normalisation on highly uncontrolled images including occlusion, self-occlusion and large pose changes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro