27.5-29.5 GHz Switched Array Sounder for Dynamic Channel Characterization: Design, Implementation and Measurements

05/22/2021
by   Harsh Tataria, et al.
0

A pre-requisite for the design of wireless systems is the understanding of the propagation channel. While a wealth of propagation knowledge exists for bands below 6 GHz, the same can not be said for bands approaching millimeter-wave frequencies. In this paper, we present the design, implementation and measurement-based verification of a re-configurable 27.5-29.5 GHz channel sounder for measuring dynamic directional channels. Based on the switched array principle, our design is capable of characterizing 128×256 dual-polarized channels with snapshot times of around 600 ms. This is in sharp contrast to measurement times on the order of tens-of-minutes with rotating horn antenna sounders. Our design lends itself to high angular resolution at both link ends with calibrated antenna arrays sampled at 2^∘ and 5^∘ intervals in the azimuth and elevation domains. This is complemented with a bandwidth of up to 2 GHz, enabling nanosecond-level delay resolution. The short measurement times and stable radio frequency design facilitates real-time processing and averaging of the received wavefronts to gain measurement signal-to-noise ratio and dynamic range. After disclosing the sounder design and implementation, we demonstrate its capabilities by presenting dynamic and static measurements at 28 GHz over a 1 GHz bandwidth in an office corridor environment.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro